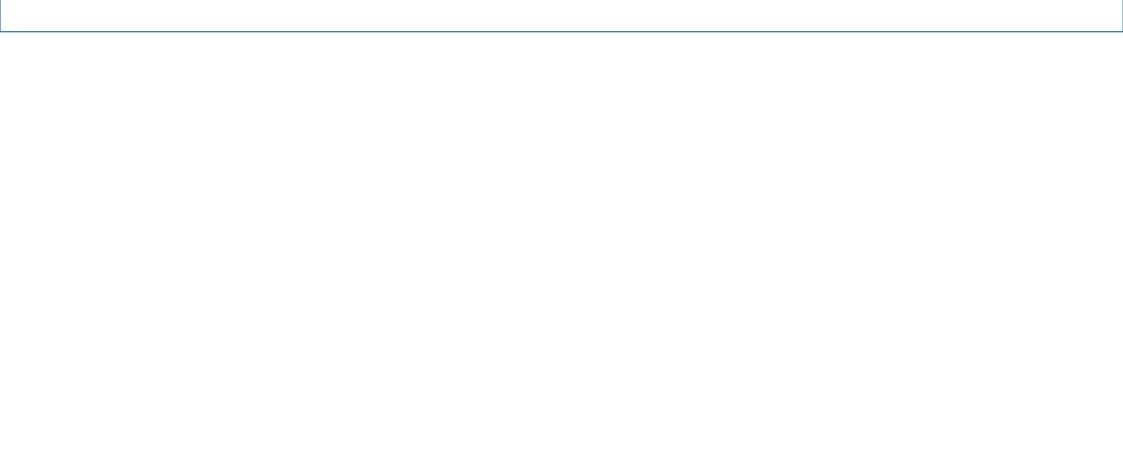

The Paris agreement challenge (COP 21)

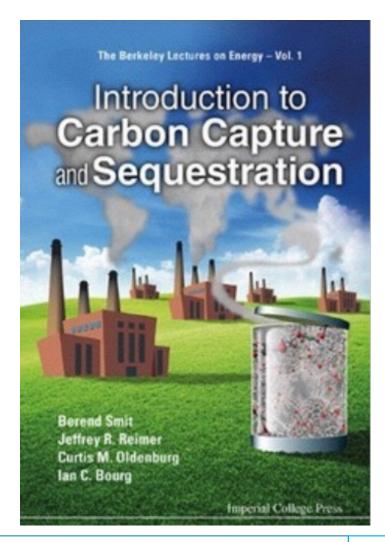

20%: our remaining carbon budget

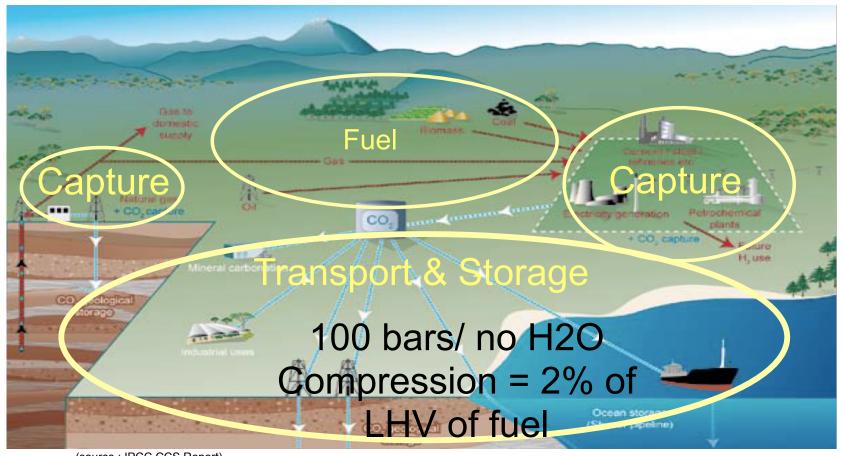
2.5%: world GDP to invest each year

1CHF/day/cap:

the contribution of Swiss citizens

http://ipcc.ch/report/sr15/

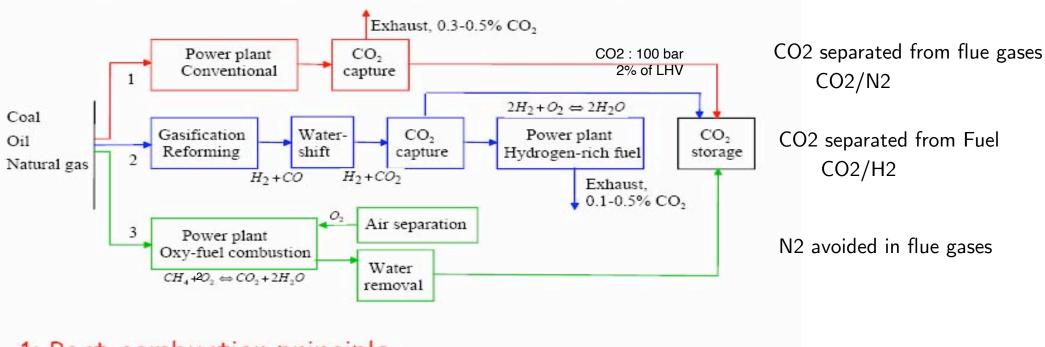



CO2 Capture, Sequestration and Re-Use

Prof. François Marechal

Further readings

CO₂ capture and storage (CCS)



(source : IPCC CCS Report)

Francois Marechal

CO2 capture in power plants

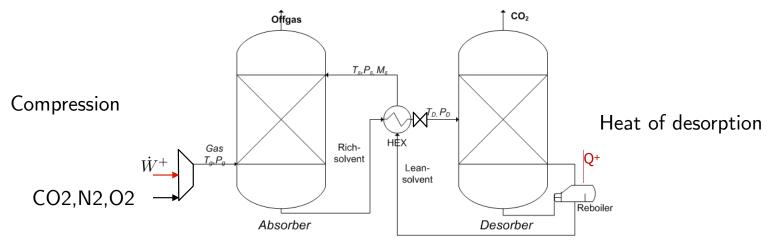
CxHy + (x+y/4)O2 + (x+y/4) 3.77 N2 => xCO2 + y/2 H2O + (x+y/2) 3.77 N2

1: Post-combustion principle

2: Pre-combustion principle

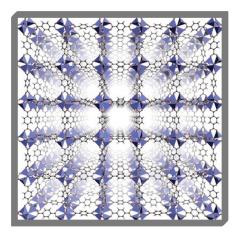
3: Oxy-fuel principle = direct stoichiometric combustion with oxygen

Fig. 3.17 Options for CO₂ separation [16]

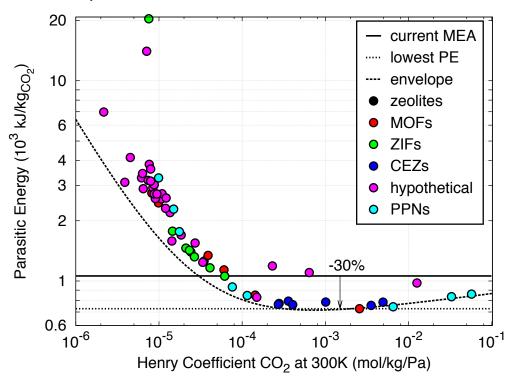

Ab(d)sorption systems

- Temperature and pressure conditions
- CO2 delivery conditions for transport and sequestration

Table 1: Comparison of physical and chemical ab- and adsorption for CO₂ separation [13].


Process	Conditions	Gas removed	Thermal Energy	Mechanical work	CO ₂ purity
			kWh/kgCO ₂	kWh/kgCO ₂	%
Rectisol	$T_{abs} \approx -10/-70^{\circ}C$	CO_2 , NH_3	0.025	0.038	<90%
	$p_{CO2}>10bar$	H_2S , COS, HCN			
Selexol	$p_{CO2}\approx$ 7-30bar	CO_2 , NH_3	0.016 - 0.024	0.03-0.06	
		H_2S , COS, HCN			
MEA	$T_{abs} \approx 40^{\circ}C$, 1-5bar	CO_2 , CS_2	2.3	0.05 - 0.3	< 99%
	$T_{desorb} = 95 - 120^{\circ}C$	H_2S , SO_2 , COS			
PSA-Flue gas 28-34% CO ₂	$P_{ad} = 1bar, P_{desorb} = 0.05 - 0.9bar$	CO_2	0.16	-0.18	
PSA - syngas	$P_{ad} = 13 - 21bar$, $P_{desorb} < 1bar$	CO_2			>90%

N2,O2 + CO2<< (90% captured) CO2>> to sequestration (needs compression!)



Research in new adsorbent


MOFs (Metal Organic Frameworks), Zeolites

Zn₄O(1,4-benzenedicarboxylate)₃ MOF-5

Increasing CO2 concentration

CO2 Recirculation allows for higher CO2 partial pressure in the absorber => lower investment cost
O2 excess lower in the burner => flame stability problems

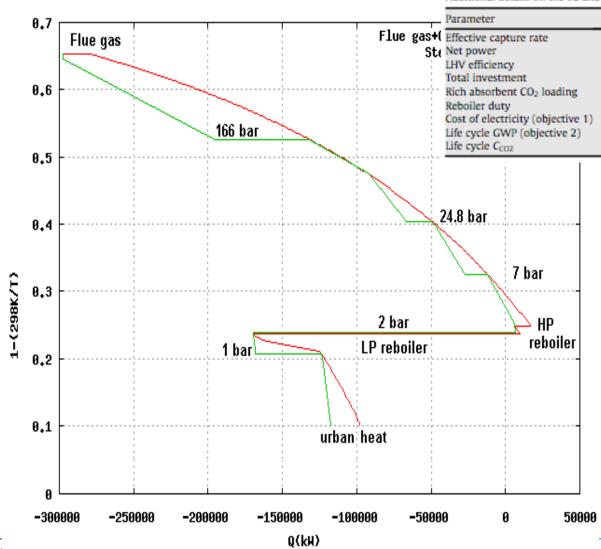
Heat integration

Table 4
Additional details on the b2 and b5 designs.

Unit

MW

MS


S/MW h

\$/kg CO_{2ec}

mol CO2/mol MEA

kg CO2eq/MW h

GJ/ton CO2 captured

Efficiency drop from 59% to 54%!

Design b2

90.2

363

54.5

351

0.465

3.45

78.31

111.9

62.43

Design b5

96.4

360

54.0

357

0.461

3.46

79.85

88.4

62.67

Cost of electricity +20 \$/MWhe (+50%)

The heat of desorption reduces the electricity produced
Heat of adsorption can be recovered

Oxyfuel route

Fuel + O2 → CO2 + H2O

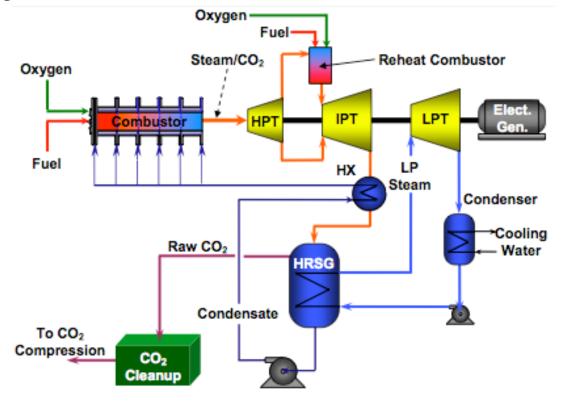
No N2 in the flue gases

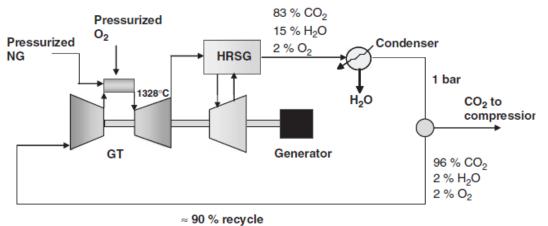
CO2 separation by condensing H2O

O2 to be produced from Air

* needs a Air Separation Unit

* consumes Elec



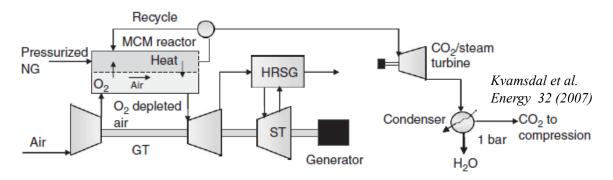

FIGURE 3. Conceptual Layout of CES Oxy-Fuel Cycle

Oxyfuel in gas turbine

- Oxy-fuel combustion
 - Matiant O₂/CO₂ cycle

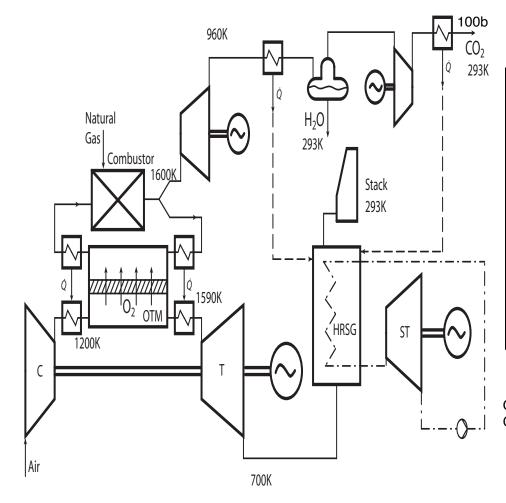
Exhaust gas used as working fluid

CO₂ recycled to combustor to keep turbine inlet temperature (TIT) at required level



Kvamsdal et al. Energy 32 (2007)

- Matiant cycle: increase of efficiency by increasing the upper cycle pressure and inserting a reheat
- Efficiency: max 45%


Oxyfuel route: separation with membranes

- Oxy-fuel combustion
 - AZEP (Advanced zero emission power plant) concept
 - Combustor replaced by mixed conductive membrane reactor (MCM)
 - Separation of O₂ from air by membrane
 - Near-to-stoichiometric fuel combustion
 - Heat exchange

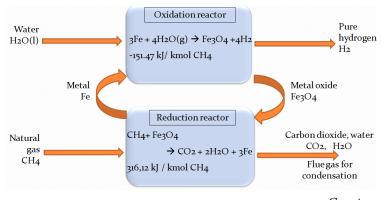
- Efficiency: 55-62%
- Specific cost: 690-1404\$/kW

Oxy-fuel: AZEP Plant (Alstom)

	Solution A	Solution B		
Gas Turb. press. ratio	18	41		
OTM inlet temp.	1200 K	1200 K		
Oxygen sep. ratio	21.8%	31.2%		
OTM outlet HX Δ T	100 K	97 K		
Combustor out. temp.	1600 K	1600 K		
Steam head. press.	101 bar	102 bar		
	14 bar	13 bar		
	2 bar	1 bar		
Steam head. superh.	357 K	365 K		
	311 K	214 K		
	283 K	290 K		
Condensate head. press.	0.021 bar	0.020 bar		
ΔT multiplication factor	1	1		
Specific Cost	690 US\$/kW	1404 US\$/kW		
Efficiency	55.1%	62.5%		

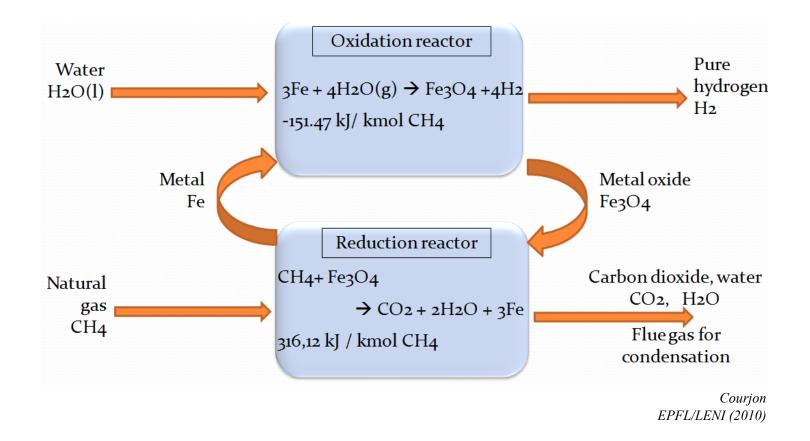
OTM : Oxygen separation membrane Ceramic Separation membrane at high temperature (900 °C)

Chemical looping Combustion

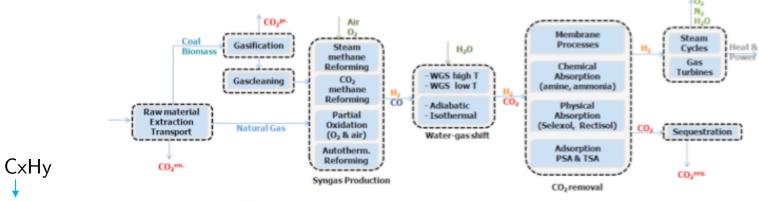

CO₂ capture concepts

- Oxy-fuel combustion
 - Chemical looping combustion (CLC)
 - No direct contact between air and fuel
 - Combustion process split up into oxidation and reduction
 - Metal oxide as oxygen carrier

■ Efficiency: 51%


Pressuized CO₂/steam turbine O₂ depleted CO₂ to HRSG 1 bar Generator Kvamsdal et al. Energy 32 (2007)

■ Alternative H₂ co-production



Courion EPFL/LENI (2010)

Chemical looping

Hydrogen production routes

Steam Methane reforming

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2(\Delta h^0 = 206kJmol^{-1})$$

General info: Endothermic reaction
Temperature 500 − 1000 °C
Pressure 1 − 30 bar

Steam/methane ratio

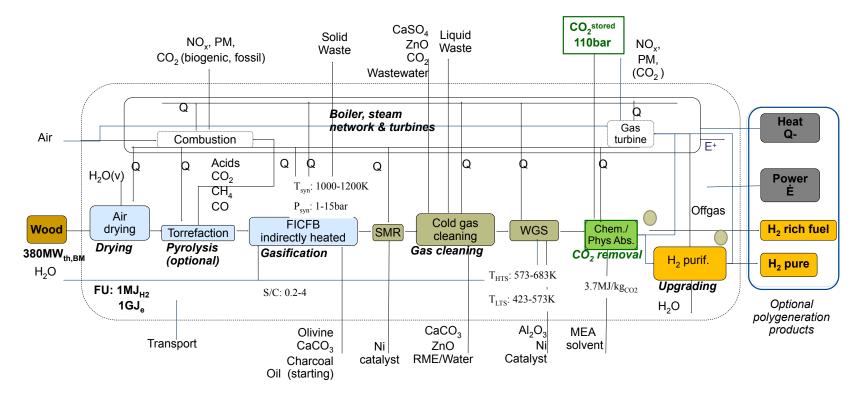
Table 1. Reaction properties for a conventional steam methane reformer (SMR)

2 - 3.5

Nickel- and aluminium oxide-based catalysts

CO + H2	
---------	--

$$C_n H_m + nH_2 O \rightleftharpoons nCO + (\frac{m}{2} + n)H_2 \tag{5}$$

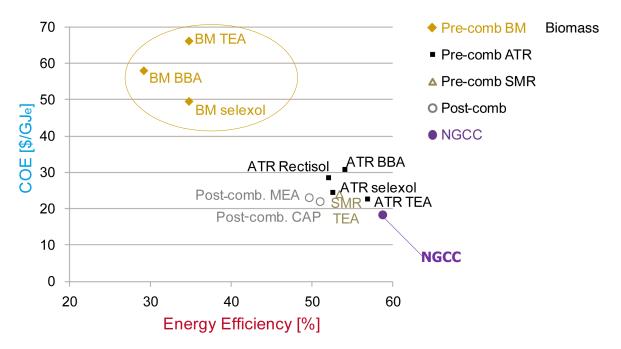

This reaction is equilibrated and takes place simultaneously with the shift reaction, therefore the resulting gas mixture always contains the four components.

Water gas shift reaction

 $CO + H_2O \rightleftharpoons CO_2 + H_2(\Delta h^0 = -41kJmol^{-1})$ (6)

CO2 is separated from the H2
H2 is then the fuel for a combined cycle or a fuel cell

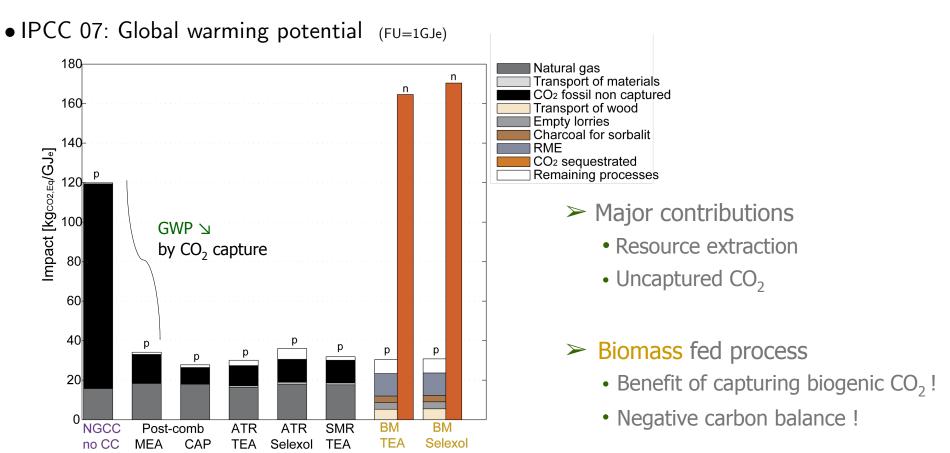
Electricity production using biomass with CO2 capture



- \bullet Configurations (380MW_{th,BM})
 - Without/with CO₂ capture (compression to 110bar)
 - ullet H $_2$ process with $\dot{\mathsf{E}}$ import or self-sufficient or $\dot{\mathsf{E}}$ generation

CO₂ capture options comparison

CO₂ capture energy and cost penalty


- Different process configurations
 - Natural gas fed processes 90% CO₂ capture, biomass 60% capture

Competition between post- and pre-combustion

CO₂ capture options comparison

CO₂ capture environmental performance

Decision-making

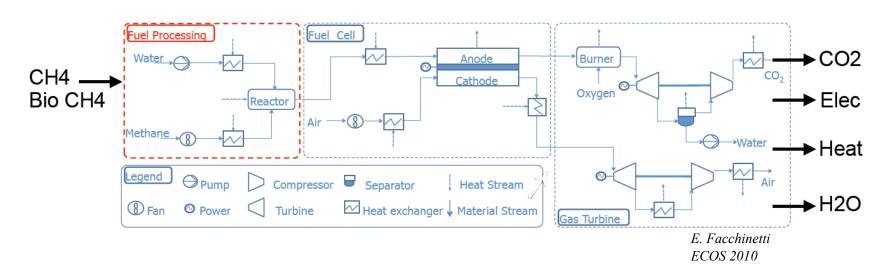
Most economically competitive process configurations

System	NGCC	Post-comb	ATR	BM	
Performance	no CC	MEA	Selexol	Selexo	
Feed [MW _{th}]	559	582	725	380	
CO ₂ capture [%]	0	82.9	78.6	69.9	
ε _{tot} [%]	58.75	50.6	53.5	35.4	
Net electricity [MW _e]	328	295	383	135	
[kg _{cO2, local} /GJ _e]	105	13.9	22.2	-198.1	
COE incl. tax[\$/GJ _e]	18.2-28.8	9-40	12.8-42	15-69	
Avoid. Costs incl. tax [\$/ t _{CO2,avoided}]	_	-63-121	-49-127	0-253	

- > CO₂ capture penalty
 - Efficiency **\(:** 6-10%-pts (CO₂ compression ~2%-pts)
 - COE **7**: 20-25%
- ➤ Best performing process
 - Efficiency: Nat gas. pre-comb.
 - Economic: Nat gas. post-comb.
 - Environmental: Biomass pre-comb.
- Competition between processes and objectives!

CO2 mitigation cost

Table 7Performance of the different power plant options with CO₂ capture.


System capture technology	NGCC no CC	Post-comb MEA	Post-comb CAP	ATR TEA	ATR Selexol	SMR TEA	BM TEA	BM Selexol	
Feed [MW _{th,NG/BM}]	$MW_{th,NG/BM}$] 559 587 588		725	725	725	380	380		
CO ₂ capture [%]	0	89.5	89.7	89.7	89.1	89.3	59	59	
$\epsilon_{ m tot}$ [%]	58.75	49.6	50.9	56.8	52.6	53.3	34.8	34.8	
	Power balance	2							
Net electricity [MW _e]	328	291	299	408	375	381	132	132	
$\dot{E}_{consumption}^{+}$ [MJ _e /GJ _{e,net}]	-	108.3	44	91.9	146.6	48.1	342.4	342.4	
$\dot{E}_{steamnetwork}^{-}$ [MJ _e /GJ _{e,net}]	340.7	341.3	301	200	177.6	143.8	346.2	346.2	
$E_{gasturbine}^{-}$ [MJ _e /GJ _{e,net}]	659.3	767	743	891.9	969	904.3	996.2	996.2	
	Economic performance (assumptions Table 10 – base)								
Invest. $[\$/kW_e]$	555	909	785	757	813	798.8	7380	3880	
COE no CO ₂ tax [\$/GJ _e]	18.31	23.7	22.5	22.67	24.5	24.1	66.1	49.5	
COE with CO_2 tax $[\$/GJ_e]$	22	24.2	22.8	23.0	24.9	24.5	60.2	43.6	
Avoidance costs [$\$/t_{CO_2,avoided}$]	-	60	43	46	66	62	173	113	
	Environmental performance (FU = $1GI_e$)								
CO_2 emissions $[kg_{CO_2}/GJ_e]$	105	14.9	8.5	10.1	11.5	11.2	-170.4	-170.4	
IPCC GWP $[kg_{CO_2,eq}/GJ_e]$	120	34	27.7	30	31.9	36.1	-139.6	-134.2	
EI99 [pts/GJ _e]	7.48	7.7	7.7	7.7	8.1	9.0	6.2	6.1	
Impact 2002 [10^{-3} pts/GJ _e]	28.9	20.8	20.3	21.5	22.4	25	2.9	3.2	
CML acidification $[10^{-2} \text{kg}_{SO_2,eq}/\text{GJ}_e]$	20.1	14.9	15.4	20.6	21.8	24.3	21.3	21.1	
CML eutrophication [$10^{-3} \text{ kg}_{PO_4,eq}/\text{GJ}_e$]	39	23.6	24.4	37.7	40.6	43.5	95.1	95	

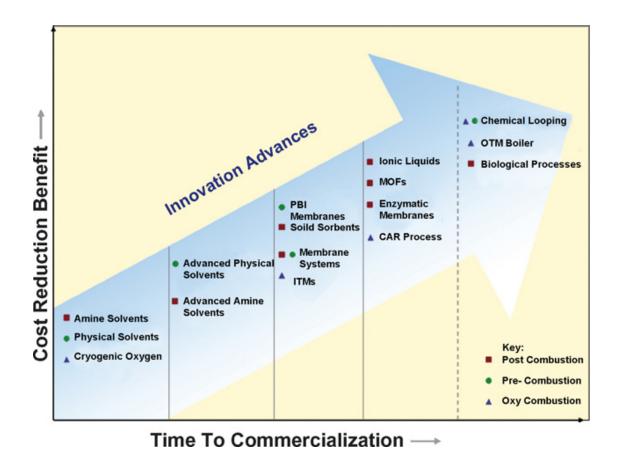
Scenario	Base
Resource price [\$/GJ _{res}]	9.7
Carbon tax[$\$/t_{CO_2}$]	35
Yearly operation [h/year]	7500
Expected lifetime [years]	25
Interest rate [%]	6
Biomass feed [MW _(th)]	380
NG feed (post-comb) $[MW_{(th)}]$	725
NG feed (pre-comb) [MW _(th)]	590

Tock, Laurence, and François Maréchal. "Thermo-environomic optimisation strategy for fuel decarbonisation process design and analysis." *Computers & Chemical Engineering* 83 (2015): 110-120.

CO₂ capture

- Fuel cell gas turbine hybrid system
 - SOFC => O2 separation membrane
 - Innovative cycle with CO₂ capture
 - Energy efficiency 83%
 - Exergy efficiency >75%

Facchinetti, Emanuele, Daniel Favrat, and François Marechal. "Innovative Hybrid Cycle Solid Oxide Fuel Cell-Inverted Gas Turbine with CO2 Separation." *Fuel Cells* 11.4 (2011): 565-572.


CO₂ capture: Performance

Fuel decarbonization performance

Electricity	PC		IGCC		NGCC				H ₂ plant		
Capture	no	Post	Оху	no	Pre	no	Post	Оху	Pre	no	Pre
η [%]¹	45	30	35	41-44	33	60	50	48	46		52-68
CO ₂ emissions [kg/MWh] ²	833	58	-	688	105	343	43	-	42	493	61
COE [\$/MWh]4	43-52	62-86	61-80	41-61	54-79	31-50	\leftarrow	43 – 72	\rightarrow	23-36	27-48
\$/to CO2 captured4	-	29-51	-	-	13-37	-	\leftarrow	37-74	\rightarrow		2-56

- \triangleright With CO₂ capture: Efficiency \searrow , COE \nearrow
 - Without capture 400-800MW_e, with capture 300-700MW_e
 - Up to 10% points lower efficiency
 - Additional COE 10-30\$/MWh, ∼50% higher COE
- 1. Kanniche M. et al., Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Appl. Therm. Eng. 30, no.1, 53-62, 2010.
- 2. Parsons E.L. et al., Advanced fossil power systems comparison study: Final Report, NETL, 2002.
- 3. Klett. et al. Hydrogen Production Facilities Plant Performance and Cost Comparisons. United States Department of Energy NETL, March 2002
- 4. Metz, B et al., IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, 2005

Carbon capture technology

[1] Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H. & Srivastava, R. D. Advances in CO2 capture technologyâ€"The U.S. Department of Energy's Carbon Sequestration Program. *International Journal of Greenhouse Gas Control*, **2008**, 2, 9 - 20